2.1 Soils Texture and Group Determinations Revision: January 30, 2013 February 4, 2016 #### 2.1.1 Determining Soil Textural Classifications Soil texture is determined by the proportion of three separates: sand, silt, and clay. It is one of the most important characteristics of soil for water movement because of its relationship to pore size, pore size distribution, and pore continuity. Permeability, aeration, and drainage are all related to the soils' ability to filter and adsorb or otherwise retain, pollutants for treatment. Sizes of the major separates are shown in Table 2-1. Table Error! No text of specified style in document.-1. Sizes of mineral, soil, and rock fragments. | Material | Equivalent Diameter ^a | Passes Sieve # | |------------------|---|---------------------------| | Clay | <0.002 mm ^b | 425 | | Silt | 0.002–0.05 mm | 270 | | Very fine sand | 0.05–0.1 <mark>0</mark> mm | 140 | | Fine sand | 0.1 <mark>0</mark> –0.25 mm | 100 | | Medium sand | 0.25–0.5 <mark>0</mark> mm | 50 | | Coarse sand | 0.5 <u>0</u> –1.0 <u>0</u> mm | 16 | | Very coarse sand | 1.0 <mark>0</mark> –2.0 <mark>0</mark> mm | 10 | | Gravel | 2.0 <mark>0</mark> mm-7-5 cm mm | 3 in. ^{<u>b</u>} | | Cobbles | 7.5–25 <u>0</u> .4 cm mm | 10 in. | | Stones | 25 <u>0</u> .4 –6 <u>004</u> cm mm | 24 in. | | Boulders | >6 <u>001</u> cm mm | _ | a. NRCS National Soil Survey Handbook (NSSH) Part 618 (Subpart A), 618.46 (D) and 618.31(K) 3ii The Soil Textural Classification used by Idaho was adopted from the United States Department of Agriculture (USDA). Soil textures of proposed soil absorption sites are determined according to these guidelines. Once the textures have been determined, then the soil design groups may be specified for the absorption system design. Characteristics of each soil texture are shown in Table 2-2. To determine the texture classification of soils, refer to Table 2-32, Table 2-3, and Figure 2-1 for summaries of the soil particle distributions and percentages in each of the textures. Refer to Figure 2-2 for a flowchart of the steps for determining soil classification. b. Notes: millimeter (mm); centimeter (cm); inches (in) Table 2-2. Soil textural characteristics^a. | Soil
Texture | Visual Detection of Particle Size and General Appearance of Soil | Squeezed by Hand
and Pressure
Released When
Air-Dry | Squeezed by Hand
and Pressure
Released When
Moist | Ribben
Between
Thumb and
Finger | |--|---|--|---|--| | Sand | Soil has a granular appearance, loose, gritty grains visible to the eye. Free flowing when dry. | Will not form a cast. Falls apart easily. | Forms cast that crumbles at least touch. | Cannot ribbon | | Sandy
loam | Somewhat cohesive soil; aggregates easily crushed. Sand dominates but slight velvety feel. | Cast crumbles easily when touched. | Cast will bear careful handling. | Cannot ribbon | | Loam | Uniform mixture of silt, clay, and sand. Aggregates crushed under moderate pressure. Velvety feel that becomes gritty with continued rubbing. | Cast will bear careful handling. | Cast can be handled freely. | Cannot ribbon | | Silt loam | Quite cloddy when dry. Can be pulverized easily to a fine powder. Over 50% silt. | Cast can be freely handled. Flour-like feel when rubbed. | Cast can be freely handled. When wet, flows into puddle. | Will not ribbon
but has slight
plastic look. | | Silt | Over 80% silt with little fine sand and clay. Cloddy when dry pulverizes readily to a flour-like powder. | Cast can be freely handled. | Cast can be freely handled. Puddles readily. "Slick" feeling. | Ribbons with a broken appearance. | | Silty clay
loam | Hard lumps when dry, resembling clay. Takes strong pressure to break the lumps. | Cast can be freely handled. | Cast can be freely handled. Can be worked into a dense mass. | Forms thin ribbon that breaks easily. | | Clay | Very fine-textured soil breaks into very hard lumps that take extreme pressure to break. | Cast can be freely handled. | Cast can be freely handled. "Sticky" feeling. | Forms long,
thin ribbons. | | Soil
Texture | USDA Soil <u>Textural</u> Classification | Dry Soil Description (0-25% available moisture percent ^b) | Moist Soil Description (75-100% available moisture percent) | | |----------------------|--|---|---|---| | | | | Ball ^c Formation | Ribbon ^d Between Thumb and Finger | | <u>Coarse</u> | Fine sand Loamy fine sand Sand Coarse sand Loamy coarse sand Loamy sand Very fine sand | Dry, loose, will hold
together if not
disturbed, loose sand
grains on fingers with
applied pressure | Wet, forms a weak ball ¹ , loose and aggregated sand grains remain on fingers, darkened color, heavy water staining on fingers | Will not ribbon | | Moderately
Coarse | Sandy loam Fine sandy loam Very fine sandy loam Coarse sandy loam Loamy very fine sand | Dry, forms a very
weak ball,
aggregated soil
grains break away
easily from ball | Wet, forms a ball with wet outline left on hand, light to medium water staining on fingers | Makes a weak
ribbon between
thumb and
forefinger | | Medium | Sandy clay loam Loam Silt loam Silt | Dry, soil aggregations break easily, no moisture staining on fingers, clods crumble with applied pressure | Wet, forms a ball with
well-defined finger
marks, light to heavy
soil/water coating on
fingers | Ribbons between thumb and forefinger | | <u>Fine</u> | Clay Clay loam Silty clay loam Sandy clay Silty clay | Dry, soil aggregations
easily separate, clods
are hard to crumble
with applied pressure | Wet, forms a ball,
uneven medium to
heavy soil/water
coating on fingers | Ribbons easily
between thumb
and forefinger | a. Adapted from USDA Natural Resource Conservation Service (NRCS). April 1998, Reprinted June 2005. Estimating Soil Moisture by Feel and Appearance. Program Aid Number 1619. ^{b. Available moisture percent is that percent of the available water-holding capacity of the soil occupied by water. c. Ball is formed by squeezing a hand full of soil very firmly with one hand. d. Ribbon is formed when soil is squeezed out of hand between thumb and forefinger.} Table 2-3. Soil textural proportions. | <u>USDA</u> Soil
Textur <u>al</u> e
<u>Classifications</u> | Sand (%) | Silt (%) | Clay (%) | |--|----------|--------------------|-------------------| | Sand | >85 | <15 | <10 | | Loamy sand | 70–90 | <30 | 1 0-15 | | Sandy loam | 43–85 | <50 | <20 | | Loam | 23–52 | <u>28-</u> <50 | 7–27 | | Silty loam | <50 | 50–88 | <27 | | Silt | <20 | >80 | <12 | | Sandy clay loam | 45–80 | <28 | 20–35 | | Clay loam | 20–45 | 15–53 | 27–40 | | Silty clay loam | <20 | 6 40–73 | 27–40 | | Sandy clay | 45–65 | <20 | 35–55 | | Silty clay | <20 | 40–60 | 40–60 | | Clay | <45 | <40 | >40 | Basic textural names may be modified if the soil mass contains 15%–95% of stones, cobble, or gravel by adding the name of the dominant rock fragment: - Gravelly or stony = 15%–35% of the soils volume is rock fragments. - Very gravelly or very stony = 35%–60% of the soils volume is rock fragments. - Extremely gravelly or extremely stony = 60%–95% of the soils volume is rock fragments. - 95% or more should take the name of the geological type, such as granite, gneiss, limestone, or gravel. # **TGM-Soil Texture Flowchart Triangle** A black and white version is provided in Appendix B. Figure 2-1. United States Department of Agriculture soil textural triangle. A black and white version is provided in Appendix B. Figure 2-2. Soil texture determination flowchart. #### 2.1.2 Soil Design Groups and Subgroups This section is provided as a guide to field environmental health personnel in making technical allowances for standard systems and for health districts to use in selecting alternative systems. The required absorption area of a subsurface sewage disposal system depends on the texture of the soils in the proposed disposal system location. In a similar manner, required separation distances between the disposal area and features of concern, such as wells, surface water, and ground water, depend on soil texture. Soils surrounding the disposal system and those below it may not be the same. The soil design group or subgroup (Table 2-4) used to determine the minimum effective soil depth, and applicable separation distances, describes the finest-textured soils adjacent to the drainfield trenches and beneath the drainfield for the effective soil depth. All other soil textures and some soil features (i.e., gravel, coarse sand, all clays, organic muck, claypan, hardpan, and duripan) are unsuitable for installing a standard drainfield system. Table 2-4. Soil textural classification design groups. | Soil
Design | Soil
Design | Soil Textural
Classification | Application Rate ^a (GPD/ft ²) ^b | |----------------|----------------|---|---| | NS° | <u>NS</u> | <u>Gravel</u>
<u>Coarse sand</u> | <u>NS</u> | | | A-1 | <mark>Medium s</mark> ≦and [₫] | <u>1.2</u> | | Α | A-2a | Medium Loamy coarse sand | <u>1.0</u> | | A | A-2b | Fine sand
Loamy sand | 0.75 | | В | B-1 | Very fine sand
Sandy loam
Very fine sandy loam | 0.6 | | | B-2 | Loam
Silt loam
Sandy clay loam <u> (≤27% clay)</u> | <u>0.45</u> | | С | C-1 | Silt
Sandy clay <u>loam^e</u>
Silt <u>y</u> clay loam ^{<u>e</u>} | 0.3 | | | C-2 | Clay loam ^e | 0.2 | | <u>NS</u> | <u>NS</u> | Sandy Clay Silty Clay Clay Organic muck Duripan Hardpan Claypan | <u>NS</u> | <u>a.</u> Application rates are for domestic strength wastewater. A safety factor of 1.5 or more should be used for wastes of significantly different characteristics. b. Gallons per day per square foot (GPD/ft²). - c. Not suitable (NS) for installation of a subsurface sewage disposal system. - d. See medium sand definition (section 3.2.8.1.2) for a manufactured material that may be acceptable for use. - e. Soils without expandable clays. ### 2.1.3 Soil Design Subgroup Corrections A soil design subgroup may be lowered as indicated in this section. (Subgroup correction is used to determine the application rate only; it will not change surface water or ground water separation requirements.) - 1. Soil with moderate or strong platy structure should be lowered one subgroup for design purposes. - 2. Soil should be lowered one subgroup if 35%–60% of its volume is rock fragments (very gravelly, very stony). - 3. Soil should be lowered by two subgroups if 60%–95% of its volume is rock fragments (extremely gravelly, extremely stony). - 4. Soil with 95% or greater rock fragments is unsuitable as an effective soil for subsurface sewage disposal. - 5. Uniform fine and very fine sand (e.g., blow sands) should be lowered two subgroups for design purposes. Soils that qualify for this modification have a coefficient of uniformity less than three (C_u < 3.0). #### **Example:** A soil evaluation results in the designation of loamy sand with rock fragments volumes estimated at 70% of the total soil volume below-within the effective soil depth of below the drainfield installation. The loamy sand would be assigned a soil design subgroup of A-2b consistent with Table 2-4. Due to the estimated volume of rock fragments, the soil design subgroup would then be lowered by two subgroups resulting in an assigned soil design subgroup of B-2. Based on these determinations, the drainfield would be sized consistent with the B-2 soil application rate (0.45 GPD/ft²; section 2.3, Table 2-94) to increase the available soil surface available for effluent treatment due to the soil surface being reduced by large fraction rock. However, both the required vertical (effective soil depth, IDAPA 58.01.03.008.02.c) and the horizontal separation distances (IDAPA 58.01.03.008.02.d) shall meet the requirements for soil design group A soils.